The Relationship Between RATS-splines and the Catmull and Clark B-splines

نویسندگان

  • Andreas Savva
  • Gordon Clapworthy
چکیده

This paper presents the relationship between the Recursive Arbitrary Topology Splines (RATS) method, derived by the authors, and the Catmull and Clark recursive B-Spline method. Both methods are capable of defining surfaces of any arbitrary topology of control points. They "fill-in" n-sided regions with foursided patches. The Catmull & Clark method is derived from the midpoint subdivision of B-splines whereas the RATS method is derived from the midpoint subdivision of Bézier splines. RATS generates an additional set of patches defining the border of the surface but the RATS inner surface is identical to the Catmull and Clark surface. This paper illustrates this relationship between the two methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G2 Tensor Product Splines over Extraordinary Vertices

We present a second order smooth filling of an n-valent Catmull-Clark spline ring with n biseptic patches. While an underdetermined biseptic solution to this problem has appeared previously, we make several advances in this paper. Most notably, we cast the problem as a constrained minimization and introduce a novel quadratic energy functional whose absolute minimum of zero is achieved for bicub...

متن کامل

Spline surfaces with T-junctions

This paper develops a new way to create smooth piecewise polynomial free-form spline surfaces from quadmeshes that include T-junctions, where surface strips start or terminate. All mesh nodes can be interpreted as control points of geometrically-smooth, piecewise polynomials that we call GT-splines. GT-splines are B-spline-like and cover T-junctions by two or four patches of degree bi-4. They c...

متن کامل

A subdivision scheme for surfaces of revolution

This paper describes a simple and efficient non-stationary subdivision scheme of order 4. This curve scheme unifies known subdivision rules for cubic B-splines, splines-in-tension and a certain class of trigonometric splines capable of reproducing circles. The curves generated by this unified subdivision scheme are C2 splines whose segments are either polynomial, hyperbolic or trigonometric fun...

متن کامل

Smooth multi-sided blending of biquadratic splines

Biquadratic (bi-2) splines are the simplest choice for converting a regular quad meshes into smooth tensor-product spline surfaces. Existing methods for blending three, five or more such bi-2 spline surfaces using surface caps consisting of pieces of low polynomial degree suffer from artifacts ranging from flatness to oscillations. The new construction, based on reparameterization of the bi-2 s...

متن کامل

A generalized surface subdivision scheme of arbitrary order with a tension parameter

This article presents a generalized B-spline surface subdivision scheme of arbitrary order with a tension parameter.We first propose a tensor-product subdivision scheme that produces ku×kv order generalized B-spline limit surfaces. Generalized B-spline surface is the unified and extended form of B-splines, trigonometric B-splines and hyperbolic B-splines (Fang et al. 2010). The tensor product s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001